63 research outputs found

    The (related-key) impossible boomerang attack and its application to the AES block cipher

    Get PDF
    The Advanced Encryption Standard (AES) is a 128-bit block cipher with a user key of 128, 192 or 256 bits, released by NIST in 2001 as the next-generation data encryption standard for use in the USA. It was adopted as an ISO international standard in 2005. Impossible differential cryptanalysis and the boomerang attack are powerful variants of differential cryptanalysis for analysing the security of a block cipher. In this paper, building on the notions of impossible differential cryptanalysis and the boomerang attack, we propose a new cryptanalytic technique, which we call the impossible boomerang attack, and then describe an extension of this attack which applies in a related-key attack scenario. Finally, we apply the impossible boomerang attack to break 6-round AES with 128 key bits and 7-round AES with 192/256 key bits, and using two related keys we apply the related-key impossible boomerang attack to break 8-round AES with 192 key bits and 9-round AES with 256 key bits. In the two-key related-key attack scenario, our results, which were the first to achieve this amount of attacked rounds, match the best currently known results for AES with 192/256 key bits in terms of the numbers of attacked rounds. The (related-key) impossible boomerang attack is a general cryptanalytic technique, and can potentially be used to cryptanalyse other block ciphers

    New Methodologies for Differential-Linear Cryptanalysis and Its Extensions

    Get PDF
    In 1994 Langford and Hellman introduced differential-linear cryptanalysis, which involves building a differential-linear distinguisher by concatenating a linear approximation with such a (truncated) differential that with probability 1 does not affect the bit(s) concerned by the input mask of the linear approximation. In 2002 Biham, Dunkelman and Keller presented an enhanced approach to include the case when the differential has a probability smaller than 1; and in 2005 they proposed several extensions of differential-linear cryptanalysis, including the high-order differential-linear analysis, the differential-bilinear analysis and the differential-bilinear-boomerang analysis. In this paper, we show that Biham et al.\u27s methodologies for computing the probabilities of a differential-linear distinguisher, a high-order differential-linear distinguisher, a differential-bilinear distinguisher and a differential-bilinear-boomerang distinguisher do not have the generality to describe the analytic techniques. Thus the previous cryptanalytic results obtained by using these techniques of Biham et al. are questionable. Finally, from a mathematical point we give general methodologies for computing the probabilities. The new methodologies lead to some better cryptanalytic results, for example, differential-linear attacks on 13-round DES and 10-round CTC2 with a 255-bit block size and key

    Cryptanalysis of Block Ciphers

    Get PDF
    The block cipher is one of the most important primitives in modern cryptography, information and network security; one of the primary purposes of such ciphers is to provide confidentiality for data transmitted in insecure communication environments. To ensure that confidentiality is robustly provided, it is essential to investigate the security of a block cipher against a variety of cryptanalytic attacks. In this thesis, we propose a new extension of differential cryptanalysis, which we call the impossible boomerang attack. We describe the early abort technique for (related-key) impossible differential cryptanalysis and rectangle attacks. Finally, we analyse the security of a number of block ciphers that are currently being widely used or have recently been proposed for use in emerging cryptographic applications; our main cryptanalytic results are as follows. An impossible differential attack on 7-round AES when used with 128 or 192 key bits, and an impossible differential attack on 8-round AES when used with 256 key bits. An impossible boomerang attack on 6-round AES when used with 128 key bits, and an impossible boomerang attack on 7-round AES when used with 192 or 256 key bits. A related-key impossible boomerang attack on 8-round AES when used with 192 key bits, and a related-key impossible boomerang attack on 9-round AES when used with 256 key bits, both using two keys. An impossible differential attack on 11-round reduced Camellia when used with 128 key bits, an impossible differential attack on 12-round reduced Camellia when used with 192 key bits, and an impossible differential attack on 13-round reduced Camellia when used with 256 key bits. A related-key rectangle attack on the full Cobra-F64a, and a related-key differential attack on the full Cobra-F64b. A related-key rectangle attack on 44-round SHACAL-2. A related-key rectangle attack on 36-round XTEA. An impossible differential attack on 25-round reduced HIGHT, a related-key rectangle attack on 26-round reduced HIGHT, and a related-key impossible differential attack on 28-round reduced HIGHT. In terms of either the attack complexity or the numbers of attacked rounds, the attacks presented in the thesis are better than any previously published cryptanalytic results for the block ciphers concerned, except in the case of AES; for AES, the presented impossible differential attacks on 7-round AES used with 128 key bits and 8-round AES used with 256 key bits are the best currently published results on AES in a single key attack scenario, and the presented related-key impossible boomerang attacks on 8-round AES used with 192 key bits and 9-round AES used with 256 key bits are the best currently published results on AES in a related-key attack scenario involving two keys

    Cryptanalysis of a Type of White-Box Implementations of the SM4 Block Cipher

    Get PDF
    The SM4 block cipher was first released in 2006 as SMS4 used in the Chinese national standard WAPI, and became a Chinese national standard in 2016 and an ISO international standard in 2021. White-box cryptography aims primarily to protect the secret key used in a cryptographic software implementation in the white-box scenario that assumes an attacker to have full access to the execution environment and execution details of an implementation. Since white-box cryptography has many real-life applications nowadays, a few white-box implementations of the SM4 block cipher has been proposed with its increasingly wide use, among which a type of constructions is dominated, that use an affine diagonal block encoding to protect the original XOR sum of the three branches entering the S-box layer of a round and use its inverse to protect the original input of the S-box layer, such as Xiao and Lai\u27s implementation in 2009, Shang\u27s implementation in 2016 and Yao and Chen\u27s implementation in 2020. In this paper, we show that this type of white-box SM4 constructions can be somewhat equivalent to a plain implementation mostly with Boolean masks from a security viewpoint, by devising collision-based attacks on Xiao and Lai\u27s, Shang\u27s and Yao and Chen\u27s implementations with a time complexity of respectively about 2222^{22}, 2392^{39} and 2222^{22} to peel off most white-box operations until only Boolean masks remain. Besides, we present a collision-based attack on a white-box SM4 implementation with a time complexity of about 217.12^{17.1} to recover an original round key, which uses a linear diagonal block encoding instead of an affine diagonal block encoding. Our results show that generating such a white-box SM4 implementation with affine encodings can be simplified into generating a plain implementation with Boolean masks (if its security expectation is beyond the above-mentioned complexity), and the effect of an affine encoding is significantly better than the effect of a linear encoding in the sense of our cryptanalysis results

    Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher under 192 Key Bits

    Get PDF
    The AES block cipher has a 128-bit block length and a user key of 128, 192 or 256 bits, released by NIST for data encryption in the USA; it became an ISO international standard in 2005. In 2008, Demirci and Selccuk gave a meet-in-the-middle attack on 7-round AES under 192 key bits. In 2009, Demirci et al. (incorrectly) described a new meet-in-the-middle attack on 7-round AES under 192 key bits. Subsequently, Dunkelman et al. described an attack on 8-round AES under 192 key bits by taking advantage of several advanced techniques, including one about the key schedule. In this paper, we show that by exploiting a simple observation on the key schedule, a meet-in-the-middle attack on 8-round AES under 192 key bits can be obtained from Demirci and Selccuk\u27s and Demirci et al.\u27s work; and a more efficient attack can be obtained when taking into account Dunkelman et al.\u27s observation on the key schedule. In the single-key attack scenario, attacking 8 rounds is the best currently known cryptanalytic result for AES in terms of the numbers of attacked rounds, and our attack has a dramatically smaller data complexity than the currently known attacks on 8-round AES under 192 key bits

    Spatiotemporal variations and risk characteristics of potential non-point source pollution driven by LUCC in the Loess Plateau Region, China

    Get PDF
    With increasing human activities, regional substrate conditions have undergone significant changes. These changes have resulted in temporal and spatial variations of non-point source pollution sources, which has a significant impact on the quality of the regional soil, surface water, and groundwater environments. This study focused on the human-disturbed Loess Plateau region and used an enhanced potential non-point-source pollution index (PNPI) model to explore the dynamic changes of regional potential non-point-source pollution (PNP) and the associated risk due to land use and land cover change (LUCC) over the past 31 years. The Loess Plateau region is mainly composed of cultivated land, grassland and forest, which together account for 93.5% of the watershed area. From 1990 to 2020, extensive soil and water conservation measures were implemented throughout the Loess Plateau region, resulting in a significant reduction in the non-point source pollution risk. Using the quantile classification method, the study area’s PNP risk values were categorized into five distinct levels. The results revealed a polarization phenomenon of PNP risk in the region, with an increase in non-point source pollution risk in the human-influenced areas and a rapid expansion of the very high-risk area. However, the non-point source pollution risk in the upstream water source area of the watershed reduced over the study period. In recent years, the rapid urbanization of the Loess Plateau region has been the primary reason for the rapid expansion of the very high PNP risk area throughout the watershed. This study highlights the significant impact of LUCC on the dynamic changes in PNP risk within the Loess Plateau region, providing crucial insights into future conservation and urban planning policies aimed at enhancing the ecological health and environmental quality of the region

    A Bit-Vector Differential Model for the Modular Addition by a Constant

    Get PDF
    ARX algorithms are a class of symmetric-key algorithms constructed by Addition, Rotation, and XOR, which achieve the best software performances in low-end microcontrollers. To evaluate the resistance of an ARX cipher against differential cryptanalysis and its variants, the recent automated methods employ constraint satisfaction solvers, such as SMT solvers, to search for optimal characteristics. The main difficulty to formulate this search as a constraint satisfaction problem is obtaining the differential models of the non-linear operations, that is, the constraints describing the differential probability of each non-linear operation of the cipher. While an efficient bit-vector differential model was obtained for the modular addition with two variable inputs, no differential model for the modular addition by a constant has been proposed so far, preventing ARX ciphers including this operation from being evaluated with automated methods. In this paper, we present the first bit-vector differential model for the n-bit modular addition by a constant input. Our model contains O(log2(n)) basic bit-vector constraints and describes the binary logarithm of the differential probability. We also represent an SMT-based automated method to look for differential characteristics of ARX, including constant additions, and we provide an open-source tool ArxPy to find ARX differential characteristics in a fully automated way. To provide some examples, we have searched for related-key differential characteristics of TEA, XTEA, HIGHT, and LEA, obtaining better results than previous works. Our differential model and our automated tool allow cipher designers to select the best constant inputs for modular additions and cryptanalysts to evaluate the resistance of ARX ciphers against differential attacks.acceptedVersio
    • …
    corecore